

Date Planned : / /	Daily Tutorial Sheet - 10	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

- 91. Sketch the curves and identify the region bounded by x = 1/2, x = 2, $y = \log x$ and $y = 2^{x}$. Find the area of this region. (1991)
- **92.** Compute the area of the region bounded by the curves $y = ex \log x$ and $y = \frac{\log x}{ex}$, where $\log e = 1$.

(1990)

(1987)

- 93. Find maximum and minimum value of the function $y = x(x-1)^2$, $0 \le x \le 2$. Also, determine the area bounded by the curve $y = x(x-1)^2$, the Y-axis and the line x = 2. (1989)
- 94. Find the area of the region bounded by the curve $C: y = \tan x$, tangent drawn to C at $x = \pi/4$ and the X-axis. (1988)
- **95.** Find the area bounded by the curves $x^2 + y^2 = 25$, $4y = |4 x^2|$ and x = 0 above the X-axis.
- 96. Find the area bounded by the curves $x^2 + y^2 = 4$, $x^2 = -\sqrt{2}y$ and x = y. (1986)
- 97. Sketch the region bounded by the curves $y = \sqrt{5 x^2}$ and y = |x 1| and find its area. (1985)
- 98. Find the area of the region bounded by the X-axis and the curves defined by $y = \tan x$, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $y = \cot x$, $\frac{\pi}{6} \le x \le \frac{\pi}{3}$. (1984)
- 99. Find the area bounded by the X-axis, part of the curve $y = \left(1 + \frac{8}{x^2}\right)$ and the ordinates at x = 2 and x = 4.

 If the ordinates at x = a divides the area into two equal parts, then find a. (1983)
- **100.** Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y 2. (1983)
- **101.** The area of the region $\{(x,y): xy \le 8, 1 \le y \le x^2\}$ is : **(2019)**
 - (A) $8\log_e 2 \frac{14}{3}$ (B) $8\log_e 2 \frac{7}{3}$ (C) $16\log_e 2 6$ (D) $16\log_e 2 \frac{14}{3}$
- 102. If $I = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \frac{dx}{\left(1 + e^{\sin x}\right)\left(2 \cos 2x\right)}$ then $27I^2$ equals_____. (2019)
- 103. The value of the integral $\int_{0}^{\pi/2} \frac{3\sqrt{\cos\theta}}{\left(\sqrt{\cos\theta} + \sqrt{\sin\theta}\right)} d\theta \text{ equals} \underline{\hspace{1cm}}.$ (2019)